top of page

Geometric Proof of the Red Emerald

For many centuries, every student on Earth was expected to read and master The Elements.

The Elements were The Basics of a standard education, serving as humanity's essential guide to understanding Geometry -- the study of forms, shapes and the world around us.

Euclid's Elements, Definitions, Common Notions and Postulates

Geometry involves evaluation and definition of physical structures. Developing a methodology to describe three-dimensional (3D) figures has been essential to many professions, but the skill continues to dominate in importance for the modernized workforce. 3D-printing and Computer-Aided Design (CAD) are only beginning to take their logical roles as valuable solutions to the problems of a functioning world. In one of history's stellar achievements, Euclid's great work allows anyone with the ability to read access to this natural power of creation.

No investigation into crystals or gemstones can be conducted without consideration taken for Geometry.

Pyramidal Octahedron with Hexagonal Prism

A Diamond in the rough has the geometric shape of an octahedron, which looks like two pyramids stacked with a shared base. An Emerald in the rough has the geometric shape of a hexagonal prism, which looks like a six-sided tower. How these perfectly precise angles and impossibly smooth surfaces must have astounded ancient mankind…and they continue to amaze today! In Crystals: Growth, Morphology and Perfection, Ichiro Suragawa provided a comprehensive review of the detailed symmetry found in perfect mineral structures.

9 ct red beryl prism with pointed termination

Nine carat red beryl prism with sharply angled termination end

If a red beryl habit displays a single well-formed crystal face, the example is preserved and documented no matter how small in an attempt to add to the collective human knowledge regarding one of the rarest minerals on Earth. Ronald Ringsrud once wrote, "The fascination and Wonder that accompanies the discovery of new knowledge…is exactly the proper use of science: to lead us to amazement of Nature's creation and to experience a sense of Wonder. There is no better place to rediscover Wonder than in [the] remarkable phenomenon that occurs deep inside the finest Emeralds."




Let's review the effects of these forces on Red Emerald formation:

Beryl prisms rise from a bixbyite nucleation in topaz-rich rhyolite

Many beryls spring from a rhyolite host rock

richly-mineralized in topaz and bixbyite


The beryllium-rich rhyolite in which Red Emeralds formed came to rest beneath the surface as a lava dome, cooling slowly as heat dissipated (or radiated) in waves, creating an ebb and flow to precise temperature at specific points. A high-temperature magmatic solution holds more ions than that same solution at a lower temperature, and ions are removed as mineral precipitates as the molten rock cools. These precipitates can be reabsorbed if the lava warms again.

Beryllium molecules attach to one another using chemical bonds. Beryl molecules bond side-to-side in two-dimensional nucleus groups. Molecules are added on the same geometric plane, and the group spreads to create a flat, layered surface. The combined molecules ultimately materialize into a thin hexagonal blade one may perceive called a Wafer.

Wah-Wah Red Beryl Gem Wafer Specimen

Although incredibly tiny, weighing under half a carat, the perfect outline of a hexagon can still be seen in this tiny Wah-Wah Wafer

Attachment occurs when ionic saturation is high and/or temperature is low, while detachment happens when temperature increases to allow disillusion of additional ions into solution. When the net overall change is zero, the process of mineral formation is at equilibrium, and the conditions required for further crystallization may no longer be satisfied.

The more physical connections a beryl has with surrounding molecules, the greater number of chemical bonds hold them in place. Stronger contacts resist disillusion, making detachment of a molecule less likely. Molecules stack in three dimensions to increase the number of connections in the group. The surfaces of many islands form at different sizes simultaneously, becoming stable as groups coalesce.

Beryl is bonded layer after layer in this way, causing more and more molecules to become Permanently Incorporated -- buried in a mineral lattice, sharing chemical bonds on all sides with other molecules in the crystal structure.

Thomas Range Red Beryl Gem Wafer Specimen

Layers of stacked hexagons can be counted on the surfaces

of this highly-disturbed and modified Wafer from the Thomas Range


The flux of molecular attachment versus detachment stabilizes the rate of crystal growth so that no single hexagonal group usually outpaces another. The formation of glassy faces is typical, but pressure and movement during formation can create disturbed and uneven surfaces, revealing the operations of independent units. Once a hexagonal group begins stacking molecules faster than others along a preferential vector, the mineral habit extends in that direction to become a Prism.

The majority of red beryl crystals weigh less than half a carat, and the average faceted Red Emerald weighs only seven to eight points (0.075 carat); the largest faceted stone 50 years after discovery weighed a mere 4.5 carat (Shigley - 2003). Whether large or small, specimens exhibit highly-complex crystal structures with recurring morphological patterns, and even the tiniest red beryl specimen can hold clues about the geological conditions present during formation.

Red Beryl grows in wafers, tabs and prisms around Bixbyite


(Origin of the Red Emerald) Since "high-temperature (>600° C) lithophysal beryls are tabular as opposed to the significantly lower temperature, prismatic beryls" (Foord - 1996), the general consensus for the Wah-Wah Mountain locality has been that Red Beryl "growth occurred at temperatures below magmatic values (~300-650° C)" (Keith, Christiansen & Tingey - 1994).

Red beryl synthesis is the result of Pneumatolysis -- a process of rock alteration involving high-temperature magma releasing gas under pressure while solidifying. This rarely-occurring natural procedure becomes Hydrothermal at lower temperatures where magma has completely cooled into rock, but "the fact that many fluids escaping from magmas are probably supercritical makes the distinction between liquid and gas somewhat superfluous" (Wones - 1989). Hydrothermal processes are responsible for the crystallization of Green Emeralds in a mica schist.

Crossed Red Beryl twin from Utah and Crossed Green Beryl twin from North Carolina in the Smithsonian Collection

The geologic conditions present during formation of the red and green beryl varieties were so similar they produced crystals with the same geometric form, identical modifications to regular morphology and a similar expressed essence.

In The Elements, Euclid's First Common Notion proposes "things equal to the same thing are also equal to one another." If the red variety of beryl has a characteristic modified geometric structure, and if that geometric structure also belongs to the green, then the two varieties enjoy mineral equivalence. Expressed mathematically, if A = B and B = C then A = C.

This rare American gem is therefore geometrically demonstrated to be the Red version of what we call Emerald!



bottom of page